

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

trans-Bis(acetato-kO)bis(2-aminoethanol- $\kappa^2 N.O$)nickel(II)

Mahdi Seifollahi Bazarjani,* Sabine Foro, Wolfgang Donner, Aleksander Gurlo and Ralf Riedel

Technische Universität Darmstadt, Fachbereich Material- und Geowissenschaften, Petersenstrasse 23, D-64287 Darmstadt, Germany Correspondence e-mail: mseifba@materials.tu-darmstadt.de

Received 13 March 2012; accepted 2 April 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.036; wR factor = 0.093; data-to-parameter ratio = 14.8.

In the title compound, $[Ni(CH_3CO_2)_2(C_2H_7NO)_2]$, the Ni^{II} cation, located on an inversion center, is N,O-chelated by two 2-aminoethanol molecules and further coordinated by two monodendate acetate anions in a slightly distorted octahedral geometry. The latter is stabilized by intramolecular $O-H \cdots O$ hydrogen bonds involving the non-coordinated O atom of the acetate and the H atom of the hydroxy group of the 2aminoethanol ligand. In the crystal, $N-H\cdots O$ hydrogen bonds link the molecules into a three-dimensional supramolecular framework that involves (a) the coordinated acetate O atom and one of the H atoms of the amino group and (b) the non-coordinated acetate O atom and the other H atom of the amino group.

Related literature

For an application of the title compound, see: Bazarjani et al. (2011). For the synthesis of NiO via the sol-gel route, see: Ozer & Lampert (1998); Livage & Ganguli (2001). For supramolecular structures of transition metal complexes, see: Desiraju (1995, 2007). For related structures, see: Downie et al. (1971); Werner et al. (1996); Williams et al. (2001).

Experimental

Crystal data

[Ni(C₂H₃O₂)₂(C₂H₇NO)₂] $M_r = 298.97$ Monoclinic, $P2_1/c$ a = 5.3284 (5) Å b = 9.216 (1) Å c = 13.133 (2) Å $\beta = 94.22 (1)^{\circ}$

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector Absorption correction: multi-scan

(CrysAlis RED; Oxford

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.093$ S = 1.031314 reflections 89 parameters 3 restraints

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H11N\cdots O2^{i}$	0.85 (2)	2.24 (2)	3.071 (3)	168 (3)
$N1 - H12N \cdot \cdot \cdot O3^{ii}$	0.86(2)	2.60 (2)	3.352 (3)	146 (3)
O1−H1 <i>O</i> ···O3	0.81 (2)	1.80 (2)	2.587 (3)	166 (3)

Symmetry codes: (i) x - 1, y, z; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was performed within the framework of the project "Thermoresistant Ceramic Membranes with Integrated Gas Sensor for High Temperature Separation and Detection of Hydrogen and Carbon Monoxide" as part of the DFG Priority Programme "Adapting Surfaces for High Temperature Applications" (DFG-SPP 1299, www.spphaut.de, DFG - German Research Foundation).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2465).

References

- Bazarjani, M. S., Kleebe, H. J., Muller, M. M., Fasel, C., Yazdi, M. B., Gurlo, A. & Riedel, R. (2011). Chem. Mater. 23, 4112-4123.
- Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327.
- Desiraju, G. R. (2007). Angew. Chem. Int. Ed. Engl. 46, 8342-8356.
- Downie, T. C., Harrison, W., Raper, E. S. & Hepworth, M. A. (1971). Acta Cryst. B27, 706-712.
- Livage, J. & Ganguli, D. (2001). Sol. Energy Mater. Sol. Cells, 68, 365-381.

 $V = 643.17 (13) \text{ Å}^3$ Z = 2Mo Ka radiation $\mu = 1.53 \text{ mm}^-$ T = 293 K $0.16 \times 0.08 \times 0.06 \; \rm mm$

Diffraction, 2009) $T_{\rm min} = 0.792, \ T_{\rm max} = 0.914$ 2309 measured reflections 1314 independent reflections 1035 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.022$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.

Ozer, N. & Lampert, C. M. (1998). Sol. Energy Mater. Sol. Cells, 54, 147–156. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

- Werner, M., Berner, J. & Jones, P. G. (1996). Acta Cryst. C52, 72-74.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Williams, P. A., Jones, A. C., Bickley, J. F., Steiner, A., Davies, H. O., Leedham, T. J., Impey, S. A., Garcia, J., Allen, S., Rougier, A. & Blyr, A. (2001). J. Mater. Chem. 11, 2329–2334.

supplementary materials

Acta Cryst. (2012). E68, m567–m568 [doi:10.1107/S1600536812014237]

trans-Bis(acetato- κO)bis(2-aminoethanol- $\kappa^2 N$, O)nickel(II)

Mahdi Seifollahi Bazarjani, Sabine Foro, Wolfgang Donner, Aleksander Gurlo and Ralf Riedel

Comment

The synthesis of the title compound is performed at room temperature under ambient conditions by substituting H₂O of $[Ni(CH_3CO_2)_2(H_2O)_4]$ with 2-aminoethanol. As the title compound is water-free, stable under ambient conditions and well soluble in lower alcohols, it represents a cost effective precursor for the sol-gel synthesis of NiO-based nanostrutures. The latter are of interest for switchable automobile mirrors and smart windows (Ozer & Lampert, 1998). Another application of the title compound is the synthesis of nanocomposite materials; nickel-polysilazane materials with ultrasmall and well dispersed nickel nanoparticles were obtained at room temperature in the reaction between the title compound and a polysilazane (Bazarjani *et al.*, 2011). The title compound possesses significantly higher stability and higher solubility in lower alcohols when compared with a similar Ni^{II} complex coordinated by two *N*,*N*-dimethylamino-ethanol molecules, $[Ni(CH_3CO_2)_2(C_4H_{11}NO)_2]$, which is air-sensitive (Williams *et al.*, 2001). These differences are due to the $-NH_2$ group of the 2-aminoethanol ligand which is in the solid state hydrogen bondied to neighbouring $[Ni(CH_3CO_2)_2(C_2H_7NO)_2]$ units and in solution it can get involved in hydrogen bonding with lower alcohols. The former results in the increased stability of the title compound, the latter is responsible for higher solubility of the title compound in alcohols (*e.g.* for methanol, compare 0.18 mol l⁻¹ for the title comput to 0.10 mol l⁻¹ for $[Ni(CH_3CO_2)_2(C_4H_{11}NO)_2]$ at 25 °C).

Figure 1 shows a perspective view of the Ni^{II} coordination in the title compound; the atom numbering scheme, the interatomic distances and angles are also indicated. The distortion from octahedral symmetry is due to the slight deviation of the internal bite angle of the 2-aminoethanol ligands from 90°, *i.e.* 83.16 (9)° for N1—Ni1—O1ⁱ, which is similar to that observed in [Ni(CH₃CO₂)₂(C₄H₁₁NO)₂] (Williams *et al.*, 2001). The title compound is stabilized through inter- and intramolecular O—H…O and N—H…O hydrogen bonds similar to those of other supramolecular crystals of transition metal complexes (Desiraju, 1995, 2007) (Figure 2, Table 1).

The geometry and coordination of the monodentate acetate group in the title compound is comparable to those in $[Ni(CH_3CO_2)_2(H_2O)_4]$ (Downie *et al.*, 1971), in $[Ni(CH_3CO_2)_2(C_6H_7N_3O)_2(EtOH)_2]$ (Werner *et al.*, 1996), and in $[Ni(CH_3CO_2)_2(C_4H_{11}NO)_2]$ (Williams *et al.*, 2001). The acetate groups are close to be fully ionized (CH_3CO_2) ; as in a fully ionized acetate, the C–C–O angles (B and C in Figure 3) are about 115.7° and the O–C–O angle is about 126° (A in Figure 3, Table 2) (Williams *et al.*, 2001). The length of the Ni–O(acetate) (Table 3), Ni–O(non-acetate) (Table 4) and Ni–N bonds (Table 5) in the title compound are comparable to those in similar Ni^{II} complexes, *i.e.* in $[Ni(CH_3CO_2)_2(C_4H_{11}NO)_2]$ (Williams *et al.*, 2001), $[Ni(CH_3CO_2)_2(H_2O)_4]$ (Downie *et al.*, 1971) and $[Ni(CH_3CO_2)_2(C_6H_7N_3O)_2(EtOH)_2]$ (Werner *et al.*, 1996).

Experimental

Synthesis of title compound. 5.76 g of nickel (II) acetate tetrahydrate (>=99.0%, Sigma Aldrich) was added to 150 cm³ absolute ethanol (>=98, Sigma Aldrich) and mixed with 4.24 g of ethanolamine (>=99.0%, Sigma Aldrich) in a molar

ratio of 1:3. The resultant bluish solution was stirred in air for 24 h, paper filtered to remove any insoluble compounds and used for the crystallization of single crystals based on the following procedure: one third of the latter bluish clear solution was removed *via* distillation under vacuum at room temperature. The solution was kept at 5 °C for two weeks to grow the single crystals.

Refinement

The H atoms of the NH group and OH group were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å and O—H = 0.82 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the U_{eq} of the parent atom).

Computing details

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level.

Figure 2

A perspective view of crystal structure of the title compound: intramolecular and intermolecular hydrogen bonding among the $[Ni(CH_3CO_2)_2(C_2H_7NO)_2]$ units.

Geometry of the monodentate acetate group. For values of bond lengths a and b and bond angles A, B and C see Table 2.

trans-Bis(acetato- κ O)bis(2-aminoethanol- $\kappa^2 N$,O)nickel(II)

Crystal data [Ni(C₂H₃O₂)₂(C₂H₇NO)₂] $M_r = 298.97$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.3284 (5) Å b = 9.216 (1) Å c = 13.133 (2) Å $\beta = 94.22$ (1)° V = 643.17 (13) Å³ Z = 2

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector Radiation source: fine-focus sealed tube Graphite monochromator Rotation method data acquisition using ω and φ scans Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2009) $T_{\min} = 0.792, T_{\max} = 0.914$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.093$ S = 1.03 F(000) = 316 $D_x = 1.544 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1155 reflections $\theta = 2.7-28.0^{\circ}$ $\mu = 1.53 \text{ mm}^{-1}$ T = 293 KRod, light blue $0.16 \times 0.08 \times 0.06 \text{ mm}$

2309 measured reflections 1314 independent reflections 1035 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 26.4^\circ, \ \theta_{min} = 3.1^\circ$ $h = -4 \rightarrow 6$ $k = -11 \rightarrow 6$ $l = -16 \rightarrow 11$

1314 reflections89 parameters3 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0555P)^2 + 0.1361P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} < 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
H atoms treated by a mixture of independent	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$
and constrained refinement	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	-0.0425 (6)	0.1901 (3)	0.0329 (3)	0.0405 (7)	
H1A	-0.1460	0.1586	-0.0269	0.049*	
H1B	-0.0414	0.1133	0.0834	0.049*	
C2	-0.2241 (5)	0.7831 (3)	-0.0038 (2)	0.0373 (7)	
H2A	-0.2846	0.8673	0.0314	0.045*	
H2B	-0.3346	0.7669	-0.0648	0.045*	
C3	0.2827 (5)	0.4706 (3)	0.2084 (2)	0.0344 (7)	
C4	0.5055 (6)	0.5114 (5)	0.2804 (2)	0.0572 (10)	
H4A	0.5577	0.6085	0.2658	0.069*	
H4B	0.6417	0.4455	0.2717	0.069*	
H4C	0.4587	0.5064	0.3495	0.069*	
N1	-0.2255 (4)	0.6560 (3)	0.06274 (18)	0.0304 (5)	
H11N	-0.373 (4)	0.624 (3)	0.069 (2)	0.036*	
H12N	-0.161 (5)	0.681 (3)	0.1224 (16)	0.036*	
01	-0.1486 (4)	0.3187 (2)	0.07349 (15)	0.0315 (5)	
H1O	-0.077 (5)	0.328 (4)	0.1293 (16)	0.038*	
O2	0.2717 (3)	0.5287 (2)	0.12075 (15)	0.0331 (5)	
03	0.1255 (4)	0.3817 (3)	0.23830 (16)	0.0475 (6)	
Nil	0.0000	0.5000	0.0000	0.02502 (18)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0472 (17)	0.0281 (15)	0.0470 (17)	-0.0085 (13)	0.0089 (14)	0.0003 (13)
C2	0.0388 (16)	0.0297 (15)	0.0437 (17)	0.0039 (13)	0.0053 (13)	-0.0015 (14)
C3	0.0283 (13)	0.0462 (19)	0.0286 (15)	0.0031 (12)	0.0011 (11)	-0.0047 (12)
C4	0.0442 (18)	0.098 (3)	0.0287 (15)	-0.016 (2)	-0.0052 (14)	0.0002 (19)
N1	0.0269 (11)	0.0343 (13)	0.0303 (13)	-0.0046 (10)	0.0048 (10)	0.0000 (11)
01	0.0288 (10)	0.0335 (11)	0.0325 (11)	-0.0061 (9)	0.0037 (8)	0.0012 (9)
O2	0.0282 (9)	0.0412 (12)	0.0292 (10)	-0.0055 (8)	-0.0024 (8)	0.0035 (8)
03	0.0456 (12)	0.0659 (15)	0.0308 (11)	-0.0150 (12)	0.0010 (9)	0.0109 (11)

Ni1	0.0218 (2)	0.0271 (3)	0.0259 (3)	-0.0032 (2)	0.00023 (17)	0.0028 (2)
Geome	etric parameters ((Å, °)				
C1-C	01	1.432 (4)	C4—H4B		0.9600
C1—C	22 ⁱ	1.518 (4)	C4—H4C		0.9600
С1—Н	I1A	0.9700		N1—Ni1		2.082 (2)
C1—H	I1B	0.9700		N1—H11N		0.849 (17)
C2—N	11	1.462 (4)	N1—H12N		0.863 (17)
С2—С	C1 ⁱ	1.518 (4)	O1—Ni1		2.1129 (19)
С2—Н	I2A	0.9700		01—H10		0.805 (17)
С2—Н	I2B	0.9700		O2—Ni1		2.0841 (19)
С3—С)3	1.255 (3)	Ni1—N1 ⁱ		2.082 (2)
С3—С	02	1.267 (4)	Ni1—O2 ⁱ		2.0841 (19)
С3—С	24	1.510 (4)	Ni1—O1 ⁱ		2.1129 (19)
C4—H	I4A	0.9600				
01—0	C1—C2 ⁱ	111.2 (2)	Ni1—N1—H11N		111 (2)
01-0	C1—H1A	109.4		C2—N1—H12N		108 (2)
C2 ⁱ —C	C1—H1A	109.4		Ni1—N1—H12N		110 (2)
01-0	C1—H1B	109.4		H11N—N1—H12N		108 (3)
C2 ⁱ —C	C1—H1B	109.4		C1		108.21 (16)
H1A—	-C1—H1B	108.0		C1		105 (2)
N1-C	C2—C1 ⁱ	109.1 (2)	Ni1-01-H10		100 (2)
N1-C	C2—H2A	109.9		C3—O2—Ni1		128.35 (18)
C1 ⁱ —0	C2—H2A	109.9		N1-Ni1-N1 ⁱ		180.0
N1C	C2—H2B	109.9		N1-Ni1-O2 ⁱ		90.00 (9)
C1 ⁱ —0	С2—Н2В	109.9		N1 ⁱ —Ni1—O2 ⁱ		90.00 (9)
H2A—	-C2—H2B	108.3		N1—Ni1—O2		90.00 (9)
03—0	23—02	125.0 (3)	N1 ⁱ —Ni1—O2		90.00 (9)
03-0	С3—С4	118.6 (3)	O2 ⁱ —Ni1—O2		180.00 (8)
02-0	С3—С4	116.4 (3)	N1-Ni1-O1 ⁱ		83.18 (9)
С3—С	24—H4A	109.5		N1 ⁱ —Ni1—O1 ⁱ		96.82 (9)
С3—С	24—H4B	109.5		O2 ⁱ —Ni1—O1 ⁱ		90.90 (7)
H4A—	-C4—H4B	109.5		O2-Ni1-O1 ⁱ		89.10 (8)
С3—С	C4—H4C	109.5		N1—Ni1—O1		96.82 (9)
H4A—	-C4—H4C	109.5		N1 ⁱ —Ni1—O1		83.18 (9)
H4B—	-C4—H4C	109.5		O2 ⁱ —Ni1—O1		89.10 (8)
C2—N	11—Ni1	106.76 (16)	O2—Ni1—O1		90.90 (7)
C2—N	11—H11N	113 (2)		Ol ⁱ —Nil—Ol		180.00 (9)
C1 ⁱ —0	C2—N1—Ni1	-43.2 (3)	C3—O2—Ni1—N1		84.3 (2)
C2 ⁱ —C	C1—O1—Ni1	32.6 (3)		C3—O2—Ni1—N1 ⁱ	i	-95.7 (2)
03—0	C3—O2—Ni1	0.3 (4)		C3—O2—Ni1—O1 ⁱ	i	167.5 (2)
С4—С	C3—O2—Ni1	179.4 (2)	C3—O2—Ni1—O1		-12.5 (2)
C2—N	N1—Ni1—O2 ⁱ	-70.53 ((18)	C1—O1—Ni1—N1		173.11 (17)
C2—N	N1—Ni1—O2	109.47 (18)	C1—O1—Ni1—N1 ⁱ	i	-6.89 (17)

supplementary materials

C2-N1-Ni1-O1 ⁱ	20.37 (17)	C1-01-Ni1-02 ⁱ	83.22 (17)
C2—N1—Ni1—O1	-159.63 (17)	C1—O1—Ni1—O2	-96.78 (17)

Symmetry code: (i) -x, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A	
N1—H11 <i>N</i> ···O2 ⁱⁱ	0.85 (2)	2.24 (2)	3.071 (3)	168 (3)	
N1—H12 <i>N</i> ···O3 ⁱⁱⁱ	0.86 (2)	2.60 (2)	3.352 (3)	146 (3)	
O1—H1 <i>O</i> ···O3	0.81 (2)	1.80 (2)	2.587 (3)	166 (3)	

Symmetry codes: (ii) x-1, y, z; (iii) -x, y+1/2, -z+1/2.

Geometry of monodentate acetate groups in different octahedral Ni^{II} complexes (for definitions of bond lengths and angles, please refer to Fig. 3).

Complex	C—O ^a	C—O ^b	С—С	А	В	С	Reference
[Ni(CH ₃ CO ₂) ₂ (C ₂ H ₇ NO) ₂]	1.255 (3)	1.267 (4)	1.510 (4)	125.0 (3)	118.6 (3) 116.4 (3) ^{This} work
[Ni(CH ₃ CO ₂) ₂ (C ₄ H ₁₁ NO) ₂]	1.260 (4), 1.249 (4)	1.263 (4)	1.498 (5), 1.504 (5)	124.6 (3), 125.7 (3)	118.0 (3 117.7 (3), ^{117.4}), (3),) ^{116.6} (Williams <i>et al.</i> 3)(2001)
[Ni(CH ₃ CO ₂) ₂ (H ₂ O) ₄]	1.255 (5)	1.272 (5)	1.503 (3)	122.5	119.5	117.9	Downie <i>et al.</i> (1971)
[Ni(CH ₃ CO ₂) ₂ (C ₆ H ₇ N ₃ O) ₂ (EtO)	H) ₂]1.255 (4)	1.265 (4)	1.511 (5)	124.7 (3)	117.3 (3) 117.9 (3) ^{Werner et} al. (1996)

Ni-O(acetate) bond lengths (Å) and angles (°) in different Ni^{II} complexes.

Complex	Ni—O(acetate)	Reference
$[Ni(CH_3CO_2)_2(C_2H_7NO)_2]$	2.0841 (19)	This work
$[Ni(CH_3CO_2)_2(C_4H_{11}NO)_2]$	2.050 (2), 2.043 (2)	Williams et al. (2001)
$[Ni(CH_3CO_2)_2(H_2O)_4]$	2.067 (3)	Downie et al. (1971)
$[Ni(CH_3CO_2)_2(C_6H_7N_3O)_2(EtOH)_2]$	2.118 (2)	Werner <i>et al.</i> (1996)

 $Ni-O(non-acetate \ ligand) \ bond \ lengths (Å) \ in \ different \ Ni^{II} \ complexes.$

Complex	Ni—O(non-acetate ligand)	Reference
$[Ni(CH_3CO_2)_2(C_2H_7NO)_2]$	Ni—O (C ₂ H ₇ NO) 2.1129 (19)	This work
$[Ni(CH_3CO_2)_2(C_4H_{11}NO)_2]$	Ni—O (C ₄ H ₁₁ NO) 2.111 (2), 2.109 (2)	Williams et al. (2001)
$[Ni(CH_{3}CO_{2})_{2}(H_{2}O)_{4}]$	Ni—O (H ₂ O) 2.048 (4)	Downie et al. (1971)
$[Ni(C_5H_8O_2)_2(C_4H_{11}NO)]$	Ni—O (C ₅ H ₈ O ₂) 2.026 (3), 2.013 (4), 2.024 (4), 2.2045 (3); Ni—O (C ₄ H ₁₁ NO) 2.111 (4)	Williams et al. (2001)

Ni—N bond lengths (Å) in different Ni^{II} complexes.

Complex	Ni—N (Å)	Reference
$[Ni(CH_3CO_2)_2(C_2H_7NO)_2]$	Ni—N 2.082 (2)	This work
$[Ni(CH_3CO_2)_2(C_4H_{11}NO)_2]$	Ni—N 2.142 (3), 2.145 (3)	Williams et al. (2001)

$[Ni(C_5H_8O_2)_2(C_4H_{11}NO)]$	Ni—N 2.169 (4)	Williams et al. (2001)
$[Ni(CH_{3}CO_{2})_{2}(C_{6}H_{7}N_{3}O)_{2}(EtOH)_{2}]$	Ni—N 2.054 (3), 2.116 (3)	Werner et al. (1996)